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Abstract 

This study investigated the change in precipitation concentration due to global warming based on the 

output of one experiment (a scenario of 1% CO2 increase per year) from 12 general circulation models 

provided by the Coupled Model Intercomparison Project Phase 5 (CMIP5). Two different indices 

were used to describe precipitation concentration: (1) concentration index (CI), which measures the 

evenness of total precipitation on wet days, and (2) precipitation concentration degree (PCD), which 

measures the evenness of the annual precipitation distributions over time. We found that widespread 

increases in CI were distributed over all land areas except for some arid areas, indicating a less 

uniform distribution of precipitation on wet days in a warming climate caused by CO2 increasing. We 

also found that the spatial patterns of changes in PCD are complex, with large regional differences. 

All of the results suggest a global-scale readjustment of precipitation distribution in magnitude and 

timing. This kind of readjustment may have significant impacts on climatic and hydrological events 

and thus cause severe ecological and environmental damage.  

Keywords: climate change; precipitation concentration; increased CO2; climatological regions. 

1. Introduction 

Large increases in surface temperature, unprecedented in recent human history, have been detected 

over the past few decades (IPCC, 2013). Besides the apparent increase in global temperature, the 

hydrological cycle has also changed (Allen and Ingram, 2002; Huntington, 2006; Wu et al., 2013; 

Wang et al., 2013a). A “rich get richer” mechanism is hypothesized for the changes in the hydrologica l 

cycle and is indeed found in observations and model simulations (Held and Soden, 2006; Chou et al., 

2009; John et al., 2009; Allan et al., 2010; Trenberth, 2011). While some changes in precipitation do 

not universally follow this pattern, the subject remains complicated and disputed (Chadwick et al., 

This article is protected by copyright. All rights reserved.



2013; Greve et al., 2014; Sun et al., 2012). Even though no temporal trend is found in global mean 

precipitation, the temporal and spatial distributions of precipitation have changed (Trenberth, 2011; 

Sun et al., 2012). An inconsistent regional change in global land precipitation was detected, and the 

difference between dry and wet regions expanded (Held and Soden, 2006; Allan et al., 2010; Li et al., 

2016). The observations, (Trenberth et al., 2003; Groisman et al., 2005; Goswami et al., 2006; Fischer 

and Knutti, 2015) in agreement with climate models (Wehner, 2004; O’Gorman and Schneider, 2009; 

Collins et al., 2013; Fischer et al., 2013; Sillmann et al., 2013; Toreti et al., 2013; Donat et al., 2016), 

show an increase in precipitation extremes with a warming climate and the intensity of extreme 

precipitation will increase at a faster rate than average precipitation (IPCC, 2013). Moreover, 

significant changes in wet-day frequencies and consecutive dry days have been identified (Donat et 

al., 2013; Pal et al., 2013; Rajah et al., 2014). Differences in seasonal precipitation have also become 

more pronounced over the past three decades, characterized by an increased annual range of 

precipitation between wet and dry seasons (Chou et al., 2013; Dwyer et al., 2014). Feng et al. (2013) 

found that the inter-annual variability of seasonality increased over many parts of the dry tropics. 

Changes in the spatio-temporal distribution of precipitation are responsible for extreme climatic and 

weather events and lead to potentially disastrous impacts on society, the environment, and ecology 

(Trenberth et al., 2003; Lenderink and Meijgaard, 2008; Wang et al., 2013b; She et al., 2015).  

The detection of anthropogenic influence on changes in climate variables is immense ly 

important for adaptation planning and developing mitigation strategies to address climate change 

(Min et al., 2011; Fischer and Knutti, 2015; Sarojini et al., 2016; Wang et al., 2017). The rising 

concentration of atmospheric CO2 affects the hydrological cycle by increasing the global mean 

temperature and altering the atmospheric water vapor content (Manabe and Wetherald, 1975; 

Trenberth, 1999; Bony et al., 2013). Previous studies have attempted to investigate how precipitat ion 
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responds to changes in greenhouse gas (GHG) emissions, specifically CO2 emissions (e.g., Bony et 

al., 2013; Lau et al., 2013; Pendergrass and Hartmann, 2014; Zhang et al., 2017; Samset et al., 2018; 

Bal et al., 2019; Sillmann et al., 2019). Precipitation is projected to increase over many parts of the 

globe in a 4xCO2 world (Bal et al., 2019). Lau et al. (2013) indicated that the frequency of extreme 

precipitation increased at the expense of a decrease in moderate and light events under the prescribed 

1% CO2 increase; meanwhile, the length of dry periods also increased. Pendergrass and Hartmann 

(2014) found an increase in rain amounts at all rain rates and a substantial increase in rain at the 

highest rain rates. Zhang et al. (2017) found that the odds of occurrence of precipitation extremes 

increased more on a sub-daily scale than on a daily scale due to increased CO2. Precipitat ion 

concentration, representing the extent to which precipitation is concentrated into few events and 

concentrated in time (seasonally), has proven to be effective for identifying extreme precipitation and 

describing the heterogeneous distribution of precipitation (Zheng et al., 2017; Caloiero et al., 2019; 

Sarricolea et al., 2019). High precipitation concentration is responsible for extreme climatic and 

weather events such as floods and droughts (Li et al., 2011; Wang et al., 2013b). Moreover, 

precipitation concentration may influence the environment through soil erosion and landslides (Wang 

et al., 2013b; Caloiero et al., 2019). Also, a change in the timing of precipitation alters the timing of 

freshwater availability, which is important for water resource management (Tan et al., 2020). 

Although some attention has been paid to the topic of how extreme precipitation and precipitat ion 

intensity change under global CO2 warming, how precipitation concentration will change in a 

warming world is still unclear. The summary statistics/characteristics of precipitation in terms of 

evenness in different amounts and over different times of year are complementary to other evaluat ion 

indices such as annual precipitation amount or precipitation intensity and can provide new 

information about precipitation (Monjo and Martin-Vide, 2016; Serrano-Notivoli et al., 2018).  
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The central purpose of this article is to understand how precipitation distribution might change 

from the perspective of precipitation concentration in a warming climate, in response to increased 

CO2 emissions. The output of experiments from the Coupled Model Intercomparison Project Phase 5 

(CMIP5) provide a resource for assessing the response of climate variables to increased CO2 

emissions (Taylor et al., 2012). This set of data has been used to investigate the changes in 

precipitation due to increasing CO2 emissions (e.g., Lau et al., 2013; Pendergrass and Hartmann, 2014; 

Zhang et al., 2017). This paper uses two different indices to describe different aspects of precipitat ion 

concentration: concentration index (CI) and precipitation concentration degree (PCD). CI, proposed 

by Martin-Vide (2004), measures how the total precipitation is distributed on wet days (i.e., the 

irregular distribution of total precipitation). Higher CI represents higher percentages of total 

precipitation over a few rainy days (Martin-Vide, 2004). CI can be used to evaluate the contribut ion 

of the heaviest precipitation events to the total amount. We use another index, PCD, to reflect the 

annual precipitation distribution. PCD, proposed by Zhang and Qian (2003), reflects the degree to 

which annual total precipitation is distributed over all months of the year (i.e., the temporal 

distribution of precipitation during the year). Based on the daily precipitation data from the CMIP5 

simulations, a response of precipitation concentration to changes in atmospheric CO2 at global and 

land scales and in different climatological zones are detected. 

2. Materials and Methods 

The outputs of 12 CMIP5 models based on a 140-year experiment were selected. Detailed information 

about the 12 general circulation models (GCMs) is listed in Table 1. The experiment, 1pctCO2, is 

initialized from the preindustrial control, and the CO2 concentration is prescribed to increase at 1% 

per year from the preindustrial value of 285 ppm (Taylor et al., 2012). According to the experiment 
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design, the CO2 concentration doubles by year 70 and quadruples by the end of the model run (Taylor 

et al., 2012). Blocks of 27 years’ duration, identical to Lau et al. (2013), were analyzed. The first 27 

years of the simulation is defined as the control period. Then, the differences between the mid 27 

years (71st–97th)/the last 27 years (114th–140th) and the control period are defined as the response 

to a doubling/tripling of CO2 concentrations (DCO2/TCO2). Since the outputs of the CMIP5 models 

have different spatial resolutions, all of the daily precipitation data were interpolated to a finer 

resolution (1° × 1°). Moreover, daily precipitation amounts of more than 0.1 mm were used only to 

avoid the overestimated drizzle in the GCM simulations. 

CI is based on the Gini index. Widely used in the field of economics to estimate income 

inequality, the Gini index was recently introduced to measure the uniformity of climate variables 

(Rajah et al., 2014; Konapala et al., 2017). As a robust and nondimensional index, the Gini index is 

given as (Haughton and Khandker, 2007): 
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When an exponential distribution is fitted to substitute the polygonal line, the resulting version 

of the Gini index is referred to as CI (Martin-Vide, 2004). The visual explanation of CI is illustra ted 

in Figure 1(a). The area under the curve is estimated by the integral of the exponential curve between 

0 and 100 (Martin-Vide, 2004): 

100

0

1A bxa e x
b b
  = −    

                                                     (2) 

( )CI 5000 A / A= −                                                        (3) 

This article is protected by copyright. All rights reserved.



The coefficients a and b can be estimated by means of the least squares method. Due to its 

considerable scientific and practical merits, CI has been employed by numerous researchers to 

investigate the changing characteristics of regional or global extreme precipitation events (e.g., 

Martin-Vide, 2004; Wang et al., 2013b; Monjo and Martin-Vide, 2016; Zheng et al., 2017; Caloiero 

et al., 2019; Sarricolea et al., 2019). As a nondimensional index, the range of CI is from 0 to 1. Higher 

CI values denote precipitation is more concentrated in a few rainy days, and values closer to 1 have 

the highest disparity of precipitation. When the total precipitation is distributed evenly across all rainy 

days, the CI reaches a minimum value of 0. We used the daily precipitation data to calculate CI for 

each time interval. The limit of 0.1 mm per day was used to distinguish wet and dry days. 

Many indices have been proposed to understand the non-uniformity of annual precipitat ion 

distribution, such as the widely used seasonality indices SI (Walsh and Lawler, 1981) and S (Feng et 

al., 2013). However, these indices do not depend on a natural time sequence and cannot reflect 

temporal variations. This paper uses PCD (Zhang and Qian, 2003) to reflect the temporal distribut ion 

of precipitation during the year because PCD can not only reflect the non-uniformity of precipitat ion 

over 12 months but can also measure how temporal precipitation is concentrated during the year. 

Monthly total precipitation can be considered as a vector with both magnitude and direction (Figure 

1b). The magnitude is the total precipitation for each month, and the direction is the corresponding 

angle of each month within the whole year (the direction for a year is designated as a 360° circle) 

(Zhang and Qian, 2003). The calculation of PCD can be mathematically expressed as: 

2 2

PCD x yR R
R
+

=                                                         (4) 

sinx j jR r θ= ⋅∑                                                          (5) 
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cosy j jR r θ= ⋅∑                                                          (6) 

jR r= ∑                                                                (7) 

where R  is the annual mean total precipitation for each grid data within the study period, jr

represents the mean monthly total precipitation within the year, and jθ  stands for the azimuth of the 

corresponding month. As a nondimensional index, the range of PCD is from 0 to 1. If annual total 

precipitation is concentrated into a single month, a maximum PCD is obtained. If annual total 

precipitation is evenly distributed across the 12 months, the PCD reaches the minimum value of 0. 

< Figure 1 here please > 

< Table 1 here please > 

3. Results 

3.1 Changes in precipitation amount and wet days  

The percentage changes for each grid cell were calculated independently for the 12 GCMs, and the 

multi-model ensemble mean (MEM) was computed. Figure 2 displays the geographic distribut ions 

for changes in precipitation amount (P) and wet days (WDs) as well as the co-varying changes. More 

than 73% of the grid cells show positive changes in P. Negative changes are mainly in the 

Mediterranean region, Central America, the Caribbean region, Southern Australia, and Southern 

Africa. The zonal mean changes in P at different latitudes show that increases in P are mainly in the 

10°N‒10°S latitude band and in high latitudes from 45o to the poles. Although the number of grid 

cells with positive or negative change rates does not vary greatly between the DCO2 and TCO2 
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scenarios, the magnitude of the change rate in P is larger under the TCO2 scenario than that under 

DCO2 scenario, indicating that the spatial variations of precipitation are more pronounced with CO2 

warming. The spatial change in WD shows that the decreases in WD are found in half of grid cells 

and are more pronounced over land regions than over ocean regions. Decreases in WD are mainly 

distributed in the low and middle latitudes, while increases in WD are distributed mainly over certain 

desert regions of Africa and Asia and the plateau area of western China.  

A decrease in P and increase in WD are found only in a few grid cells, mainly over oceans. An 

increase in both P and WD, indicating an increase in water resources, occurs in some arid areas, such 

as large portions of the Arabian Peninsula, the Sahara Desert, and Tibet, which could be a favorable 

outcome by alleviating aridity in these areas. An increase in both P and WD also occurs at high 

latitudes and equatorial areas. An increase in P and decrease in WD means precipitation is 

concentrated into fewer days, which indicates an increased flood threat; some of the affected regions 

are densely populated, such as areas in East Asia, North America, eastern South Asia, central Europe, 

and southeastern South America. The areas with decreases in both P and WD, associated with 

increased aridity, include subtropical regions, such as the Mediterranean, western Asia, Australia, 

southern Africa, and southern South America and tropical regions, such as southern North America, 

northern South America, Western Indonesia, northwestern Africa, and northern Brazil. The decrease 

in WD is also more pronounced under the TCO2 scenario than under the DCO2 scenario, and the 

decreases are more concentrated over land regions than over ocean regions. 

< Figure 2 here please > 
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3.2 Change in CI 

Figure 3 exhibits the spatial pattern of the change rate in CI under the DCO2 and TCO2 scenarios. 

Stippling illustrates regions where at least 9 of the 12 models (75% of models) agree on the sign of 

the estimated changes. Reliable and consistent changes are detected under both scenarios. The change 

in CI is surprisingly uniform, and the change rate is positive over most of the globe. The increase in 

CI indicates that precipitation is more concentrated in a few events. CI increases are found across all 

continents with the exception of a few areas in central Australia, northern North Asia, and northern 

Africa. The change rates of CI are greater under the TCO2 scenario than under the DCO2 scenario. 

The areas with increases and decreases tend to increase in magnitude, exhibiting a di-pole 

amplification pattern due to increasing CO2 emissions. Considering that detection of the change in 

the distribution of precipitation over land is of high importance, we separately analyzed the change 

of precipitation concentration at the global scale and the land scale. The Antarctic was not included 

in the land region statistical analysis because of its special and complicated geographical environment 

and climatic conditions. The latitudinal distributions of zonal mean CI changes indicate large 

variability among different GCMs at equatorial and low latitudes (Figure 4). A relatively consistent 

trend is detected along 30°‒60°. The zonal MEM shows an increased trend over all latitudes due to 

increased CO2 emissions. When considering land regions only, there are larger differences between 

all of the GCMs than at the global scale. CanESM2 shows larger increases in CI than other models 

over tropical land. Moreover, a similar increase at the global scale is displayed over the latitude zonal 

mean of all land regions due to increased CO2 emissions. 
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< Figure 3 here please > 

< Figure 4 here please > 

3.3 Change in PCD 

The mean change rate in PCD over the entire globe under the DCO2 and TCO2 scenarios is shown 

in Figure 5. Stippling indicates the agreement in the sign of estimated change across at least 9 of the 

12 models (75% of models). A strong regional variability in PCD change is detected. The areas with 

increases in PCD are mainly distributed in the Southern Hemisphere but also include some Northern 

Hemisphere areas such as southern North America, western Europe, and the areas around the 

Mediterranean, the Black Sea, and the Caspian. The land areas of increasing and decreasing changes 

are about equal. The changes of PCD are more pronounced under the TCO2 scenario than under the 

DCO2 scenario. The number of grid cells with significant increases in PCD is slightly greater under 

the TCO2 scenario than under the DCO2 scenario. The latitudinal distributions of zonal mean PCD 

changes are shown in Figure 6. Globally, there is large variability among different GCMs, but most 

of the models show the same pattern along the different latitudes except at high latitudes. At high 

latitudes, the simulations of different models sometimes show opposite signs of change. For the Arctic, 

the model MRI-CGCM3 shows an increase in PCD, while other models show decreases in PCD. The 

MEM shows a small increase in PCD over 50°S to 50°N, with a relatively high value around 45°S. 

Similar behavior is found when considering land regions only. Moreover, relatively high changes are 

displayed for land regions when compared with the global regions. 

< Figure 5 here please > 

< Figure 6 here please > 

3.4 Regional analysis 
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To provide more insights into the regional changes, 21 climatological regions (Giorgi and Francisco, 

2000) were analyzed separately in detail (Table 2). Considerable regional diversity is evident among 

the 21 land regions (Figure 7). All regions except SAH show a significant increase for CI. Eleven 

regions show significant decreases in WD. Among them, there are 4 regions (CAM, CNA, SAF, MED) 

for which the all grid cells have a negative MEM. As for changes in PCD, 3 regions (AMZ, AUS, and 

SAF) exhibit significant increases, and 2 regions (ALA, NAS) exhibit significant decreases. 

Considering the CI and WD together, many regions have a significant increase in CI and a significant 

decrease in WD, mainly in southern North America (WNA, CNA, ENA, and CAM), South America 

(AMZ, SSA), the Mediterranean area (MED), Australia (AUS), Southeast Asia (SEA), and Central 

Asia (CAS). Only 1 region (ALA) exhibits a significant increase in both CI and WD. As for changes 

in CI and PCD, 3 regions located in the Southern Hemisphere (AMZ, AUS, and SAF) display a 

significant increase in both CI and PCD, and 2 regions distributed in the high latitudes of Northern 

Hemisphere (NAS and ALA) show significantly increased CI and decreased PCD. The different 

changes in CI, WD, and PCD can provide meaningful insights into potential regional impacts under 

global warming. Take the region MED as an example: the increased CI and decreased WD means that 

the precipitation happens over fewer days and that precipitation is distributed more irregular ly, 

indicating both a potential increased risk of drought or flood events. Moreover, the increase in the 

PCD indicates that precipitation becomes more concentrated seasonally. 

< Table 2 here please > 

< Figure 7 here please > 

4. Discussion and Conclusions 
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In this study, we used the outputs from 12 GCMs to examine the effects of CO2 warming on the 

characteristics of precipitation concentration. The differences in precipitation concentration under 

different CO2 concentrations (the control, DCO2, and TCO2 scenarios) were analyzed. The changes 

in CI and PCD exhibit different patterns, indicating that the different aspects of precipitat ion 

concentration respond differently to CO2 warming. Multi-model ensemble means exhibit widespread 

increases in CI over all land areas except for some arid areas, indicating that increased CO2 can lead 

to precipitation amounts that are more concentrated over fewer days. By contrast, the changes in PCD, 

which expresses how precipitation distribution over a year is concentrated, show large regiona l 

differences, exhibiting no uniform response to increased CO2 emissions. Experiments from climate 

models have indicated that change in atmospheric moisture content is not only explained by natural 

climate variability but is also caused by human-induced increases in GHG emissions (Santer et al., 

2007). GHGs play an important role in precipitation changes with both thermodynamic and dynamic 

effects (Seager et al., 2010; Zhang and Li, 2016; Pfahl et al., 2017). The increased global surface 

temperature associated with increased GHGs leads to the increase of atmospheric water content (Min 

et al., 2011; O’Gorman and Schneider, 2009; O’Gorman, 2015). Increased CO2 is also inferred to 

change large-scale circulation (Seager et al., 2010; Lau and Kim, 2015). The wide diversities found 

in the regional analysis reflect the spatially varying interactions of thermodynamics and dynamics. 

These diversities among the different regions also reveal the complexity of the climate system and 

the inhomogeneity of underlying surface conditions (Greve et al., 2014). 

For a scenario of 1% CO2 increase per year, the changes in P over the ocean areas are generally 

perceived as following the “rich getting richer” pattern, while over land, they show a more 

complicated pattern. It is worth mentioning that the global warming effects are not all adverse. The 

increase in P over some arid areas could decrease aridity. As for the changes in WD, widespread 
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decreases in WD, which increase the risk of drought or flood, are found over some densely populated 

areas, with potentially large socioeconomic impacts. The change in WD itself can reflect the change 

in the number of days with precipitation during a given period. Meanwhile, CI can measure the how 

unevenly the precipitation is distributed within the WD. The changes in CI and WD can provide a 

summary of the distribution of precipitation amounts for all days. Increasing CI and increasing WD 

means more precipitation days as well as a less uniform distribution of precipitation amounts; that is, 

there are greater increases in extreme precipitation days compared to light precipitation days due to 

increasing CO2. By contrast, increasing CI and decreasing WD indicates more dry days, reflecting 

both an increased risk of drought events and more extreme precipitation days, potentially also increase 

the risk of floods. Previous research indicated that the frequency and amount of extreme precipitat ion 

would increaseunder the prescribed 1% CO2 increase (Lau et al., 2013; Zhang et al., 2017). Lau and 

Kim (2015) pointed out that the risk of drought would increase in subtropical and tropical land regions 

due to global warming. Furthermore, although no consistent trend in PCD was shown at a global scale, 

we found that the PCD in most monsoon regions showed increasing trends, which would increase the 

risk of flooding. This is generally consistent with the findings of Bal et al. (2019) that the precipitat ion 

seasonality index would increase under the 4xCO2 scenario over many parts of the global monsoon 

regions. Monsoon regions include almost two-thirds of the world’s population and play a key role in 

global freshwater resources distribution (Zhang et al., 2019). Under global warming, the difference 

between wet and dry seasons would amplify, and the water cycle in the wet season would enhance 

over monsoon regions (Zhang et al., 2019). Above all, the change in precipitation concentration (the 

distribution in values and the seasonal timing) will no doubt increase the difficulty for water resources 

management and flood and drought prevention. 
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Uncertainties exist in the precipitation simulations using CMIP5 GCMs. The current generation 

of GCMs use parametrization schemes to represent convection; this may potentially lead to large 

uncertainties in the response of precipitation concentration to CO2 forcing (Westra et al., 2014; 

O’Gorman, 2015; Zhang et al., 2017). Moreover, although there is general agreement on the sign of 

the changes, the differences among the GCMs may introduce some uncertainty. Furthermore, the 

change in precipitation distribution is also affected by various factors such as radiation, aerosol 

concentration, atmosphere–land interactions, and land-use change (Sun et al., 2012; Lau et al., 2013; 

Zhang and Li, 2016). It is beyond the scope of this study to comprehensively analyze the reasons for 

the change in precipitation, but it does provide a comprehensive characterization of how precipitat ion 

concentration responds to increasing CO2 emissions. Further study will focus on investigating the 

physical mechanisms behind the changing structure of daily precipitation. 
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Figure Captions 

Figure 1. Pictorial explanation of the indices for precipitation distribution: (a) concentration index 

(CI) and (b) precipitation concentration degree (PCD). The concentration index is calculated as 

twice the gray shaded area between the 1:1 line and the polygonal line. The polygonal line, as 

shown by the pink curve, is given by the cumulative value of a variable according to its 

cumulative frequency. Precipitation concentration degree (PCD) represents the degree that total 

precipitation is non-uniformly distributed within a year. Monthly total precipitation can be 

considered as a vector with both magnitude and direction. θ is the angular value (in radians) 

for each month’s precipitation. 

Figure 2. Geographic distribution patterns for (a) the co-varying changes in P and WD, (b) the change 

in P, and (c) the change in WD under the DCO2 (top) and TCO2 (bottom) scenarios. Shown to 

the right of sub-figures (b) and (c) is the zonal mean change in P and WD, respectively. 

Figure 3. Geographic pattern for the distribution of the change rate (%) in CI under the DCO2 (top) 

and TCO2 (bottom) scenarios. Stippling indicates the agreement in the sign of estimated change 

across at least 9 of 12 models (75% of models). 
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Figure 4. The difference of the latitudinal zonal mean change in CI for each of the 12 CMIP5 models 

under the DCO2 scenario for all regions (land and ocean; top) and land regions only (bottom). 

Figure 5. The same as Figure 3, but for PCD. 

Figure 6. The same as Figure 4, but for PCD. 

Figure 7. The change rate of CI, WD, and PCD with uncertainty ranges for 21 climatological regions 

under the DCO2 scenario. Black, red, and blue colors represent the change in CI, WD, and PCD, 

respectively. Best estimate (solid line in the box), mean value (dashed line in the box), and the 

25% to 75% range (bottom and top edges of the box) are shown. 

Table Captions 

Table 1. Details about the CMIP5 models used in this study. 

Table 2. Details about the Giorgi climate divisions. 
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Heterogeneous response of global precipitation concentration to global warming  

 
Qing Dong, Weiguang Wang*, Kenneth E. Kunkel, Quanxi Shao, Wanqiu Xing, Jia Wei 

Based on the output of the experiments 
from the Coupled Model Intercomparison 
Project Phase 5 (CMIP5), a comprehensive 
approach from different aspects of 
precipitation concentration was 
implemented for assessment of 
precipitation concentration change due to 
CO2 emissions. We found that a global 

scale readjustment of precipitation distribution in magnitude and timing due to CO2 increasing. This 
kind of readjustment would have large impacts on climatic/hydrological events and the environment.   
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Table 1. Details about CMIP5 model used in this study. 
Model name Modeling center Resolution 

ACCESS1.0 
Commonwealth Scientific and Industrial Research 

Organization/Bureau of Meteorology, Australia  1.25° ×1.88° 

BCC-CSM1.1(m) Beijing Climate Center, China 1.11°×1.13° 
CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.79° ×2.81° 

CNRM-CM5 Centre National de Recherches Météorologiques, France ~1.4° ×1.4° 

CSIRO-Mk3.6.0 
Commonwealth Scientific and Industrial Research 

Organization/Queensland Climate Change Centre of 
Excellence, Australia 

 1.86° ×1.88° 

GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 2.0°×2.5° 
GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, USA 2.0°×2.5° 
IPSL-CM5A-MR Institut Pierre Simon Laplace, France 1.27°×2.5° 

MIROC5 
Atmosphere and Ocean Research Institute (The University of 

Tokyo), National Institute for Environmental Studies, and 
Japan Agency for Marine-Earth Science and Technology, Japan 

~1.4° ×1.4° 

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.86°×1.88° 
MRI-CGCM3 Meteorological Research Institute, Japan 1.11°×1.13° 

NorESM1-M Bjerknes Centre for Climate Research, Norwegian 
Meteorological Institute, Norway 

1.89°×2.5° 
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Table 2. Details about the Giorgi climate division. 
Name Acronym Latitude (°) Longitude (°) 

Central America CAM 10N‒30N 116W‒83W 
Western North America WNA 30N‒60N 130W‒103W 
Central North America CNA 30N‒50N 103W‒85W 
Eastern North America ENA 25N‒50N 85W‒60W 

Alaska ALA 60N‒72N 170W‒103W 
Southeast Asia SEA 11S‒20N 95E‒155E 

East Asia EAS 20N‒50N 100E‒145E 
South Asia SAS 5N‒30N 65E‒100E 

Central Asia CAS 30N‒50N 40E‒75E 
Tibet TIB 30N‒50N 75E‒100E 

Australia AUS 45S‒11S 110E‒155E 
Amazon Basin AMZ 20S‒12N 82W‒34W 

Southern South America SSA 56S‒20S 76W‒40W 
Western Africa WAF 12S‒18N 20W‒22E 
Eastern Africa EAF 12S‒18N 22E‒52E 

Mediterranean Basin MED 30N‒48N 10W‒40E 
Northern Europe NEU 48N‒75N 10W‒40E 

Greenland GRL 50N‒85N 103W‒10W 
Southern Africa SAF 35S‒12S 10W‒52E 

North Asia NAS 50N‒70N 40E‒180E 
Sahara SAH 18N‒30N 20W‒65E 
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